Hotto Engineering

  • Increase font size
  • Default font size
  • Decrease font size
Home Mobile Apps (iOS) iPhone - Gamma Detector

Gamma / X-Ray Detector for the iPhone

The Application implements a high energy photon detector for Gamma and X-Ray radiation sources.


Additionally a Mac OSX Application wich uses the built-in iSight WebCam of the MacBook Pro to detect high energy photons can be downloaded here.

The screenshot shows an active measurement where the logged EPM/PEM values of the 7th row indicate an event of high energy photon detection

 

Version 1.1 Changes:
The EVT Counter has been added which displays the High Energy Photon Events autodetected by the App [(EPM-Threshold) ≥ 10 and (PEM-Threshold) ≥ 20]. The resolution is limited to 1 event per minute.

 

OVERVIEW:
The application uses the CMOS Image Sensor of the iPhone 4/4s front camera to detect high energy photons generated by X-Ray or Gamma radiation sources.
Radiation measurements are presented as relative values. The image sensor is not a calibrated device to detect ionizing radiation in a perfectly reproduceable way which prevents absolute measurements in Gray (Gy) or dose equivalent in Sievert (Sv).

SETUP & STEPS FOR MEASURING:
1.) IMPORTANT: Make sure that visible light cannot hit the sensor by obscuring the camera lens, e.g. with a piece of black tape. The Sensor View needs to be completely dark and should merely show some noise.
2.) Place the device in a low radiation environment. The app needs to be in the foreground with an active display to be in measurement mode.
3.) Adjust the threshold slider to a value which sets the reading of the CPM to around 1-5 Counts Per Minute without a detected high energy photon. It is important that the threshold isn't set too low because the sensor noise could render the measurement results unusable. If the threshold is to high then the detector looses sensitivity.
4.) The image sensor noise depends on its temperature which implies that the threshold needs to be adapted accordingly.
5.) Position the device near to a radiation source to be measured.
6.) Because of the small size of the CMOS-Sensor it can take some time until a high energy photon hits the sensor. Plan for a longer measurement (several minutes) to detect weak radiation sources.
7.) Analyze the logged data by checking the CPM (Counts Per Minute), EPM (Average Energy Per Minute) and PEM (Peak Energy Per Minute) to identify radiation events. The application autodetects probable events and indicates them by a "+" sign in the log view.


MEASUREMENTS:

All readings are relative values by intention because the system isn't calibrated and consistent enough to calculate absolute values.
EVT
- High Energy Photon Events autodetected by the App [(EPM-Threshold) ≥ 10 and (PEM-Threshold) ≥ 20]. The resolution is limited to 1 event per minute.
CNT
- This is the overall count of activated sensor pixels. Even one high energy photon can activate several pixels which means that there is no direct correlation with the amount of X-Ray or Gamma photons hitting the sensor.
CPM - Counts Per Minute.
EPM - Average Energy Per Minute of the photons hitting the sensor during the measurement cycle. A reading significantly higher (delta ≥ 10) than the threshold value identifies most likely a high energy photon event. EPM readings near the threshold indicate normal sensor noise.
PEM - Peak Energy Per Minute represents the highest value detected by the sensor within the last measurement cycle. A significant threshold delta (≥ 20) identifies an event which will be logged if the EPM criteria is fulfilled.
MCY - The Measurement Cycle is shown by a count down.


Detector Physics & Limitations:

A semiconductor like the CMOS-Sensor in a camera is not just sensitive to photons of visible light but also to high energy photons of X-Ray and Gamma radiation. The picture below shows the Electromagnetic Spectrum and the associated wavelength/frequency of X-Ray and Gamma photons.
The other categories of radioactive radiation namely Alpha [α] (helium nucleus) and Beta [β] (electron / positron) particles cannot be detected because of the material in front of the camera sensor which mostly absorbs them.
A photon will be detected as soon as it reaches and gets absorbed by the sensor. If the energy is to high then the photon passes the sensor without any impact whereas a low energy photon probably doesn't reach the image sensor at all or gets mask by the sensor noise.

 

Example Measurements comparing environmental natural radiation with a weak radioactive mineral:

Environmental Measurement (4 Events of cosmic rays, natural Radon, etc.): |

Time:           CNT:           EPM/PEM:          EVT:
09:46:24        001            082/082          
09:47:24        004            080/081          
09:48:24        001            083/083          
09:49:24        037            107/162           +
09:50:24        000            000/078          
09:51:24        004            082/086          
09:52:24        000            000/079          
09:53:24        000            000/078          
09:54:24        002            087/092          
09:55:24        001            082/082          
09:56:24        003            083/084          
09:57:24        002            081/083          
09:58:24        002            083/085          
09:59:24        256            149/255           +
10:00:24        004            082/085          
10:01:24        001            080/080          
10:02:24        000            000/078          
10:03:24        006            085/094          
10:04:24        020            092/133           +
10:05:24        005            083/086          
10:06:24        002            082/084          
10:07:24        001            081/081          
10:08:24        000            000/078          
10:09:24        002            084/088          
10:10:24        001            080/080          
10:11:24        008            085/098          
10:12:24        007            082/087          
10:13:24        002            084/088          
10:14:24        004            081/085          
10:15:24        001            080/080          
10:16:24        001            082/082          
10:17:24        001            084/084          
10:18:24        006            087/092          
10:19:24        001            085/085          
10:20:24        005            081/084          
10:21:24        001            083/083          
10:22:24        006            082/084          
10:23:24        001            082/082          
10:24:24        000            000/079          
10:25:24        004            083/085          
10:26:24        000            000/078          
10:27:24        004            084/086          
10:28:24        002            083/084          
10:29:24        002            080/081          
10:30:24        005            084/087          
10:31:24        002            085/085          
10:32:24        005            081/082          
10:33:24        001            082/082          
10:34:24        038            148/255           +
10:35:24        001            083/083          
10:36:24        000            000/076          
10:37:24        000            000/079          
10:38:24        000            000/077          
10:39:24        003            081/083          
10:40:24        003            082/087          
10:41:24        004            084/093          
10:42:24        001            080/080          
10:43:24        002            081/082          
10:44:24        002            081/082          
10:45:24        002            081/083          
10:46:24        002            083/083

| Weak radioactive mineral directly positioned above the camera lens (20 Events):

Time:           CNT:           EPM/PEM:          EVT:
11:03:31 010 096/127 +
11:04:31 004 082/088
11:05:31 025 105/184 +
11:06:31 002 082/084
11:07:31 000 000/075
11:08:31 002 080/081
11:09:31 000 000/078
11:10:31 010 088/107
11:11:31 000 000/078
11:12:31 001 081/081
11:13:31 000 000/078
11:14:31 014 103/146 +
11:15:31 001 082/082
11:16:31 002 080/081
11:17:31 032 150/222 +
11:18:31 035 149/210 +
11:19:31 074 121/201 +
11:20:31 004 083/090
11:21:31 007 084/088
11:22:31 012 089/117
11:23:31 001 082/082
11:24:31 033 106/145 +
11:25:31 000 000/079
11:26:31 001 080/080
11:27:31 005 081/086
11:28:31 002 082/083
11:29:31 000 000/073
11:30:31 003 080/081
11:31:31 002 082/084
11:32:31 003 083/086
11:33:31 024 122/178 +
11:34:31 002 082/084
11:35:31 001 080/080
11:36:31 000 000/079
11:37:31 000 000/078
11:38:31 010 082/086
11:39:31 006 095/100 +
11:40:31 001 083/083
11:41:31 045 101/150 +
11:42:31 010 097/119 +
11:43:31 000 000/079
11:44:31 021 100/162 +
11:45:31 002 084/089
11:46:31 008 096/119 +
11:47:31 007 088/100
11:48:31 000 000/074
11:49:31 000 000/078
11:50:31 022 099/137 +
11:51:31 004 086/099
11:52:31 064 107/163 +
11:53:31 024 109/186 +
11:54:31 009 090/115 +
11:55:31 023 100/139 +
11:56:31 003 083/084
11:57:31 077 127/236 +
11:58:31 050 108/191 +
11:59:31 003 084/090
12:00:31 001 080/080
12:01:31 007 084/090
12:02:31 000 000/079
12:03:31 002 081/081